D-Glucose upregulates adenosine transport in cultured human aortic smooth muscle cells.

نویسندگان

  • George P H Leung
  • Ricky Y K Man
  • Chung-Ming Tse
چکیده

The etiology of the atherosclerosis that occurs in diabetes mellitus is unclear. Adenosine has been shown to inhibit growth of rat aortic smooth muscle cells. Nucleoside transporters play an integral role in adenosine function by regulating adenosine levels in the vicinity of adenosine receptors. Therefore, we studied the effect of 25 mM d-glucose, which mimics hyperglycemia of diabetes, on adenosine transport in cultured human aortic smooth muscle cells (HASMCs). Although RT-PCR demonstrated the presence of equilibrative nucleoside transporter-1 (ENT-1) and ENT-2 mRNA, functional studies revealed that adenosine transport in HASMCs was predominantly mediated by ENT-1 and inhibited by nitrobenzylmercaptopurine riboside (NBMPR, IC(50) = 0.69 +/- 0.05 nM). Adenosine transport in HASMCs was increased by >30% after treatment for 48 h with 25 mM d-glucose, but not with equimolar d-mannitol and l-glucose. Kinetic studies showed that d-glucose increased V(max) of adenosine transport without affecting K(m). Similarly, d-glucose increased B(max) of high-affinity [(3)H]NBMPR binding, while the dissociation constant (K(d)) was not changed. Consistent with these observations, 25 mM d-glucose increased mRNA and protein expression of ENT-1. Treatment of serum-starved cells with the selective inhibitors of MAPK/ERK, PD-98059 (40 microM) and U-0126 (10 microM), abolished the effect of d-glucose on ENT-1. We conclude that d-glucose upregulates the protein and message expression and functional activity of ENT-1 in HASMCs, possibly via MAPK/ERK-dependent pathways. Pathologically, the increase in ENT-1 activity in diabetes may affect the availability of adenosine in the vicinity of adenosine receptors and, thus, alter vascular functions in diabetes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin stimulates glucose transport via nitric oxide/cyclic GMP pathway in human vascular smooth muscle cells.

OBJECTIVE In cultured human vascular smooth muscle cells, insulin increases cyclic GMP production by inducing nitric oxide (NO) synthesis. The aim of the present study was to determine whether in these cells the insulin-stimulated NO/cyclic GMP pathway plays a role in the regulation of glucose uptake. METHODS AND RESULTS Glucose transport in human vascular smooth muscle cells was measured as ...

متن کامل

Semicarbazide-sensitive amine oxidase in vascular smooth muscle cells: differentiation-dependent expression and role in glucose uptake.

Cultured vascular smooth muscle cells (VSMCs) derived from rat aortic media were used to examine semicarbazide-sensitive amine oxidase (SSAO) expression during their differentiation process. In a defined serum-free medium permissive for in vitro VSMC differentiation, there was a large increase in SSAO mRNA and protein levels and in the related enzyme activity during the course of cell culture. ...

متن کامل

Regulation of glucose transport in aortic smooth muscle cells by cAMP and cGMP.

We have studied the ability of cGMP and cAMP to modulate platelet-derived growth factor (PDGF)-stimulated 2-deoxy-D-glucose (deGlc) transport in primary cultures of vascular smooth muscle cells (VMSC) from rat aorta. PDGF stimulated deGlc transport in a time- and concentration-dependent manner. 8-Bromo-cGMP and atrial natriuretic peptide(1-28) [ANP(1-28)] were found to reduce PDGF-stimulated de...

متن کامل

Role of L-citrulline transport in nitric oxide synthesis in rat aortic smooth muscle cells activated with LPS and interferon-gamma.

(1) l-citrulline, a coproduct of nitric oxide synthase (NOS)-catalysed metabolism of l-arginine to nitric oxide (NO), is an important intermediate of the urea cycle and a precursor for l-arginine biosynthesis in vascular cells. (2) In the present study, we have examined the characteristics of l-citrulline transport, regulation by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) and the...

متن کامل

Role of adenosine A(1) receptors in modulating extracellular adenosine levels.

The purpose of this investigation was to test the hypothesis that A(1) receptors modulate extracellular levels of adenosine in cardiovascular tissues. Rat cardiac fibroblasts and human aortic vascular smooth muscle cells were cultured to confluence and various pharmacological agents were applied to the cultures. The extracellular fluid was extracted and adenosine concentrations were measured by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 288 6  شماره 

صفحات  -

تاریخ انتشار 2005